SLP1001: A Comprehensive Guide to Sleeping in Class Spring 2026

Lecture 0: Python for Data Science
Instructor: Prof. Yitong Guo & Prof. Zhiyan Jin Date: 19/Jan/2026

1 Variables, Data Types and Operators

1.1 Variables and Constants

e A variable is a named space in the memory where a programmer can store data and later retrieve the
data using the variable name.

e The value of a variable can be changed later in a program.

e You cannot use the following words as variables:

False None True and as assert break
class continue def del elif else except
finally for from global if import in

is lambda nonlocal not or pass raise
return try while with yield

e Fixed values such as numbers and letters are called constants, since their values won’t change.

1.2 Assignment

In Python, variables are initiated by assigning values to them.

e Assignment statement: Assigned values can be retrieved from located memory.

e Cascaded assignment: Multiple variables can be set as the same value using single assignment
statement.

e Simultaneous assignment: Values of two variables can be simultaneously assigned.

1 # Assigning values to variables

2 x = 20 # Assign value 20 to variable x

3y = x + 10 # Retrived the value of x from located memory
4 print (y) # Output: 30

6a=>b=c=2+7+ 2 # Cascaded assignment

7 print(a, b, c) # Output: (11, 11, 11)

9 #Simultaneous assignment
10 WeChatID_g, WeChatID_j = "_MyLittleUniverse", "JZYapril"

Listing 1: Assignment Example

2 Lecture 0: Python for Data Science

1.3 Basic Data Types

In Python, every value has a “type” that tells the computer how to interact with it.

Integer (int): Whole numbers.

Float (float): Numbers with decimal points.

String (str): Text enclosed in quotes.

Boolean (bool): True or False values.

1 # Assigning values to variables

> age = 20 # Integer

5 gpa = 3.8 # Float

i name = "Alice" # String

5 is_enrolled = True # Boolean

6

7 print (type (gpa)) # Output: <class ‘float’>

Listing 2: Data Types Example

1.4 Type Conversion (Casting)

Sometimes data is received in the wrong format (e.g., a number stored as text). We can convert between
types using casting functions.

e int(): Converts a value to an integer (truncates decimals).

o float(): Converts a value to a float.

e str(): Converts a value to a string (text).

Converting Float to Integer (removes decimal)
price = 9.99
price_int = int(price) # Result: 9

oA W N =

Converting String to Number (essential for math on text data)
¢ data_entry = "50"
amount = int(data_entry) # Result: 50 (now we can do math)

~

Converting Number to String (essential for combining text)
10 score = 95

11 message = "Your score is "

+ str(score) # Result: "Your score is 95"

Listing 3: Type Conversion Example

1.5 Operators

We use operators to perform calculations and make comparisons.

e Arithmetic: + (add), - (subtract), * (multiply), / (divide), ** (power).

e Comparison: == (equal), != (not equal), > (greater than), >= (greater than or equal to).

N

oA W N =

Lecture 0: Python for Data Science 3

x = 10

y =3

result = x + y # 13

is_equal = (x == y) # False

power = x **x 2 # 100 (10 squared)

Listing 4: Operators Example

2 Input and Output

Programs need to interact with the user. We use print () to show results and input () to get data from the
keyboard.

Outputting text

print ("Welcome to SLP1001!!t!t")

Getting user input (input always returns a String)
user_name = input("Enter your name: ")

print ("Hello, " + user_name)

Listing 5: Input/Output Example

3 Flow Control and Loops

We use flow control to make decisions (logic) and loops to repeat tasks (iteration).

3.1 Indentation

e Increase after if/for statements.
e Maintain to indicate the scope of the block.
e Decrease to indicate the end of a block.

e Blank lines and comments are ignored.

3.2 Logical Operators

e Logical operators can be used to combine several logical expressions into a single expression.
e Python has three logical operators: not, and, or.

e not True == False, not False == True, False and True == False, False or True == True.

3.3 Handle Dangerous Part of Code (try/except)

e You surround a dangerous part of code with try/except.
e If the code in try block works, the except block is skipped.

e If the code in try block fails, the except block will be executed.

4 Lecture 0: Python for Data Science

my_string = "Hi Yitong, hi Zhiyan."
try:
convert_string = int(my_string)
except:
convert_string = -1
print (convert_string) # The Output is: -1

my_string = "1234"
try:
convert_string = int(my_string)
except:
convert_string = -1
print (convert_string) # The Output is: 1234

Listing 6: Try/except to Capture Errors

3.4 Conditional Statements (if/elif/else)

This allows the code to execute different blocks based on conditions.

score = 85

if score >= 90:

print ("Grade: A")
elif score >= 60:

print ("Grade: Pass")
else:

print ("Grade: Fail")
print ("Finished")

Listing 7: Conditional Logic Example

3.5 Loops (For and While)

e For Loop: Iterates over a sequence (like a range of numbers).

e While Loop: Keeps running as long as a condition is True.

For Loop: Print numbers 0 to 4
for i in range (5):
print (i)

While Loop: Countdown
count = 3
while count > O:
print (count)
count = count - 1 # Decrease count

Listing 8: Loop Examples

Practice: Given a set of numbers, write a program to calculate their sum using for loop.

4 Functions

A function is a reusable block of code that performs a specific task. Using functions keeps our code organized

and avoids repetition.

e Built-in functions which are part of Python, such as print(), int(), float(), etc.

Lecture 0: Python for Data Science 5

Definition: Our own functions can be defined using the def keyword.

Parameters: Inputs the function expects.

Return: The result the function sends back.

e Argument: An argument is a value we pass into the function as its input when we call.

Parameters: A parameter is a variable which we use in the function definition that is a “handle” that
allows the code in the function to access the arguments for a particular function invocation
def calculate_area(width = 1, height = 2):
"""Calculates the area of a rectangle."""
area = width * height
return area
Using the function

rect_area = calculate_area(5, 10)
print (rect_area) # Output: 50

Listing 9: Function Example

5 Lists

A List is a collection of items stored in a single variable. It is ordered and mutable (changeable). This is the
fundamental structure for storing datasets.

e Definition of Lists: A collection allows us to put many values in a single “variable”

e Indexing: Accessing items by position (starting at 0).

e Appending: Adding new items to the end.

Creating a list of numbers
data_points = [10, 20, 30, 45]

Accessing elements
first_item = data_points[0] # 10

Changing an element
data_points[2] = & # List becomes [10, 20, 5, 45]

Adding a new data point
data_points.append (50) # List becomes [10, 20, 5, 45, 50]

Length of list can be obtained using len ()
print (len(data_points)) # Output: 5

; # Slicing list

print (data_points[1:3], data_points[3:])
Output: [20, 35], [45, 50]

Sort 1list
data_points.sort ()
print (data_points) # Output: [2, 10, 20, 45, 50]

Split a string into a list
my_string = "Zhiyan played baseball last weekend"

; print(my_string.split()) # Ouput: ["Zhiyan", "played", "baseball", "last", "weekend"]

Listing 10: List Example

Practice: Write a program to instruct the user to input several numbers and calculate their average using
list methods.

6 Lecture 0: Python for Data Science

6 Dictionary

A Dictionary is a powerful data collection that stores values in a “bag” where each item is associated with a
specific label (key). Unlike lists, dictionaries are unordered and use keys rather than positions for indexing.

e Key-Value Pairs: Dictionaries consist of literals surrounded by curly braces containing key:value
pairs.
e Fast Lookup: They allow for fast, database-like operations in Python.

e The get() Method: This method checks if a key exists and returns a default value if it is not found,
preventing errors.

e Iterating: You can loop through a dictionary to access keys, values, or both as tuples using .items ().

Creating a dictionary (literals use curly braces)
counts = {"chuck": 1, "fred": 42, "jan": 100}

Accessing values based on keys

5 print (counts["chuck"]) # Output: 1

7 # Adding or updating an element

21
23 # Value is over-written

counts["age"]
counts["age"]

The get() method for safe lookups
Returns O since "eee" does not exist
print (counts.get("eee", 0)) # Output: O

5 # Getting lists of keys and values

print (list (counts.keys())) # ["jan", "fred", "chuck", "age"]
7 print (list (counts.values())) # [100, 42, 1, 23]
s # Iterating through key-value pairs
for key, value in counts.items():
print (key, value)

Listing 11: Dictionary Example

Practice: Write a program that sorts the elements of a dictionary by the value of each element rather than
the key.

7 Object Oriented Programming

Object-Oriented Programming (OOP) is a paradigm where a program is composed of many cooperating
objects that make use of each other’s capabilities. In Python, everything—including numbers and strings—is
treated as an object.

7.1 Objects and Classes

An object represents a uniquely identifiable entity in the real world (e.g., a student, a circle, or even a loan).
Every object has three key characteristics:

e Identity: A unique integer ID assigned at runtime by Python (retrieved using id()).

e Attributes: Data fields represented by variables that store the object’s properties.

Lecture 0: Python for Data Science 7

e Methods: Functions defined within a class that allow an object to perform actions.

A class serves as a blueprint or template that defines the variables and methods common to all objects of
the same kind. Creating a specific object from a class is known as instantiation.

7.2 Class Definition and self

Python classes use the __init__() method, known as the initializer, to set the initial state of an object
upon creation. All methods within a class must include self as their first parameter, which refers to the
specific instance invoking the method.

1 import math

3 class Circle:

4 # Initializer to construct a circle object

5 def __init__(self, radius=1):

6 self .radius = radius # Instance variable
8 def getArea(self):

9 return self.radius * self.radius * math.pi

11 # Creating an instance (instantiation)

12 my_circle = Circle(5)
13 print (my_circle.radius) # Accessing a data field
14 print (my_circle.getArea()) # Invoking an instance method

Listing 12: Class Definition Example

7.3 Information Hiding (Private Fields)

Directly accessing data fields is discouraged as it makes code vulnerable to bugs. Data hiding prevents
direct external access by using two leading underscores (__) to define private data fields. These can only be
accessed via “getter” and “setter” methods.

class Circle:
def init__(self, radius=1):

S S N

self.__radius = radius # Private data field
def getRadius (self): # Getter method
6 return self.__radius

Listing 13: Private Data Fields

7.4 Inheritance

Inheritance allows you to define a general class (superclass) and extend it into specialized classes (subclasses)
that inherit its properties and methods.

e Method Overriding: A subclass can modify a method implementation defined in its superclass to
suit its specific needs.

e Dynamic Binding: Python decides which method implementation to invoke at runtime by searching
from the most specific class up to the most general (the object class).

2

8 Lecture 0: Python for Data Science

class GeometricObject:

def __init__(self, color="green"):
self.color = color
class Circle(GeometricObject): # Circle inherits GeometricObject
def __init__(self, radius, color):
super () .__init__(color) # Initialize superclass properties
self.radius = radius

Listing 14: Inheritance Syntax

Practice: Design a Rectangle class with data fields for width and height, providing methods for getArea()
and getPerimeter().

8 Basic Linear Algebra

8.1 Vectors and Matrices

e Vector (v): A 1D array of numbers. Geometrically, it represents a point or an arrow in space.
U1
v=|: | €R™
Um

e Matrix (A): A 2D array of numbers. It can be viewed as a collection of column vectors.

a1 a2 -+ QAin - _
a1 Qg2 -+ A2p | ‘ ‘ \ T

A= . . . 3 =lcg ¢ - cp| =) c RMXn
. ' L -t
Aml Am2 - (mn - Tm =

8.2 Vector-Vector Multiplication (Dot Product)

The dot product of two vectors returns a single scalar value. It measures how much two vectors point in the
same direction.

al b= Zaibi = a1by + asbs + . ..
Example:

[fl”r[;l] -b 3]'[421} =(Ix4)+(Bx2)=4+6=10

8.3 Matrix-Vector Multiplication

When we multiply a matrix A by a vector z, we are transforming the vector.

Visualization: weighted summation of the columns of the matrix. The values in the vector = act
as “weights” for the columns of A.

Az = |c1 ¢ - ¢y | =ziciFvoco -+ pc,

Lecture 0: Python for Data Science 9

Example:

8.4 Matrix-Matrix Multiplication

Matrix multiplication is essentially performing Matrix-Vector multiplication multiple times (once for each
column of the second matrix). Let A € R™*" B € R"*",

I
B=|bi by - b|,AB=[Aby, Aby,---,Ab,]

a<fs o= S an - [afa) - i)

Example:

8.5 Transpose

The transpose of a matrix, denoted as A", is created by flipping the matrix over its main diagonal. The
rows of A become the columns of AT.

If Ae R™*" then AT € R,

Example:

1 2 3| Transpose
4 5 6

1 4
AT =12 5
3 6
8.6 Identity Matrix and Inverse
8.6.1 The Identity Matrix (1)

In scalar math, the number 1 is the “multiplicative identity” because 5 x 1 = 5. In linear algebra, we have
the Identity Matrix (7). It is a square matrix with 1s on the main diagonal and Os everywhere else.

I =

O O =
o~ O
= o O

Multiplying any matrix A by I leaves A unchanged: Al = A.

8.6.2 Matrix Inverse (A1)

The inverse of a square matrix A is a unique matrix denoted as A~'. When a matrix is multiplied by its
inverse, the result is the Identity Matrix.
AAT =1

This is conceptually similar to reciprocals in scalar math (5 x = = 1).

2 1

5 3

Example: Let A = [5 9

}. The inverse is A~! = { 3 _1}

10 Lecture 0: Python for Data Science

Verification:

A4 = [2 1} {3 —1] _ {(2)(3)

2 118 (1)(2)]_{6—5 —2+2]{1 0}_1

15—-15 —-5+6] [0 1

9 Introduction to Numpy

In this section we will see how we translate these linear algebra concepts into code using Numpy.

9.1 Setup

import numpy as np

3 # Define Vectors

5 v2

vl = np.array([1, 31)
= np.array ([4, 2])
s x = np.array([2, 5])

s # Define Matrices

N

o A = np.array([[1, 31,

[2, 411)
B = np.array([[5, 6],
[7, 811)

9.2 Operations

9.2.1 Vector-Vector (Dot Product)

Method 1: using @ operator
dot_prod = vl @ v2 # 1x4 + 3%x2 = 10

Method 2: using np.dot
5 dot_prod_2 = np.dot(vl, v2)
9.2.2 Matrix-Vector

Note how the dimensions change: (2 x 2)-(2x 1) — (2 x 1).

Result will be a new vector

> transformed_vector = A @ x

[< T SO U U R

3 # Result: array([17, 24])

9.2.3 Matrix-Matrix

Matrix Multiplication
= A Q@B
Result:
[ri9, 221,
[43, 5011

H HE H QH

Lecture 0: Python for Data Science 11

9.2.4 Transpose

We use the .T attribute to flip dimensions.

Rows become columns
A_transposed = A.T
Result: [[1, 2], [3, 4]]

w o=

9.2.5 Matrix Inverse

We use np.linalg.inv() to find the matrix that reverses A.

1 # Calculate Inverse

> A_inv = np.linalg.inv(A)
3

1

Verification: A @ A_inv should be Identity Matrix
5 identity_check = A @ A_inv
¢ # Result: [[1., 0.1, [0., 1.]1]

9.3 Common Data Science Functions in Numpy

Beyond linear algebra, Numpy provides essential tools for statistical analysis and data generation that we
will use frequently before moving to Pandas.

9.3.1 Descriptive Statistics

data = np.array([10, 20, 30, 40, 50])

1

3 # Basic Stats

4+ print (np.mean(data))

5 print (np.median(data))
¢ print (np.std(data))

7 print (np.max (data))

Average: 30.0
Median: 30.0
Standard Deviation: 14.14...
Maximum value

9.3.2 Filtering and Logic (np.where)

This is the Numpy equivalent of ”If-Else” for entire arrays. It is crucial for cleaning data.

scores = np.array([85, 40, 90, 55])

Syntax: np.where(condition, value_if_true, value_if_false)
results = np.where(scores >= 60, "Pass", "Fail")
5 # Result: [‘Pass’, ‘Fail’, ‘Pass’, ‘Fail’]

N

9.3.3 Unique Values

Useful for finding distinct categories in a dataset.

1 labels = np.array(["cat", "dog", "cat", "bird", "dog"l)
> unique_labels = np.unique(labels)
3 # Result: ["bird", "cat", "dog"l

12 Lecture 0: Python for Data Science

9.3.4 Random Sampling (More Examples Later)

Essential for splitting data into " Training” and ” Testing” sets later in the course.

Generate 5 random numbers between O and 1
rand_nums = np.random.rand(5)

S

Generate 3 random integers between O and 100
5 rand_ints = np.random.randint (0, 100, 3)

10 Introduction to Pandas

While Numpy is excellent for numerical calculation, real-world data often contains mixed types (text, dates,
numbers) and missing values. In the next section, we will introduce Pandas, which is built on top of Numpy
but designed for:

e DataFrames: Tabular data structures (like Excel sheets).
e Data Loading: Reading CSV, Excel, and JSON files.

e Data Wrangling: Handling missing data, merging datasets, and string manipulation.

10.1 Core Data Structures

10.1.1 Series

A Series is a one-dimensional labeled array. Unlike Numpy arrays, items in a Series can be indexed by labels
(names) instead of just integers.

1 import pandas as pd
2 import numpy as np

1 # Creating a Series with custom index labels

5 data = pd.Series([10, 20, 30], index=["a", "b", "c"])
6

7 print (data["a"]) # Access by label (Output: 10)

10.1.2 DataFrame

A DataFrame is a 2D table with rows and columns. It is essentially a collection of Series sharing the same
index.

1 # Creating a DataFrame from a Dictionary
2 df = pd.DataFrame ({

: "Name": ["Alice", "Bob", "Charlie"],

4 "Age": [25, 30, 35],

5 "City": ["New York", "London", "Paris"]
6 })

& print (df)

o # Output:
10 # Name Age City
11 # 0 Alice 25 New York
12 # 1 Bob 30 London
13 # 2 Charlie 35 Paris

Listing 15: Creating a DataFrame

N}

~

Lecture 0: Python for Data Science 13

10.2 Essential Functionality

10.2.1 Inspecting Data

Before analyzing, we must understand the structure of our data.

View the first 2 rows
print (df .head (2))

Output:

Name Age City
0 Alice 25 New York
1 Bob 30 London

Get summary of data types and non-null counts
print (df.info ())

Output:

<class ’pandas.core.frame.DataFrame’>

Data columns (total 3 columns):

Get statistical summary for numeric columns
print (df .describe ())

Output:

Age
count 3.000000
mean 30.000000

10.3 Selection and Indexing

Pandas provides two powerful methods for selecting data: .loc (Label-based) and .iloc (Integer-based).

.loc: Select by Column Name
ages = df.loc[:, "Age"]
Result: Series of [25, 30, 35]

.iloc: Select by Position (Row 0O, Column 1)
first_age = df.iloc[0, 1]
Output: 25

10.4 Missing Data

Real-world data is rarely clean. Missing values are represented as NaN (Not a Number).

DataFrame with missing values
df _missing = pd.DataFrame ({
"A": [1, 2, np.nan],
"B": [56, np.nan, np.nan]

b

1. Detect missing values (Returns Boolean DataFrame)
print (df _missing.isna())

Output:

A B
0 False False
1 False True
2 True True

2. Drop rows with ANY missing values
df _clean = df_missing.dropna()
Result: Only row O remains

3. Fill missing values (e.g., with 0)
df _filled = df_missing.fillna(0)

1

)

14 Lecture 0: Python for Data Science

Result: All NaNs replaced with 0.0

Listing 16: Handling Missing Values

10.5 Data Loading and File Systems

10.5.1 Reading and Writing Text Data

The most common format for data storage is CSV (Comma Separated Values).

Reading a CSV file
df = pd.read_csv("sample_data.csv")

Writing to a CSV file (index=False prevents saving row numbers)
df .to_csv("output_data.csv", index=False)

Listing 17: Loading Data

10.5.2 Other Types Data Loading

e Excel: pd.read_excel("data.xlsx", sheet_name="Sheetl")
e JSON: pd.read_json("data.json")

e SQL: pd.read_sql(query, connection)

11 Matplotlib for Visualization (More Examples Later)

Matplotlib is the most widely used visualization library in Python. It provides control over every aspect of
a figure. In this section, we categorize plots based on the data relationships they visualize.

11.1 Basic Operations

In Matplotlib, a plot consists of a Figure (the overall window /page) and one or more Axes (the individual

plots inside).

import matplotlib.pyplot as plt

3 # 1. Create Figure and Axes

1

5

6

8

9

10

1
12

13
14

6

fig, ax = plt.subplots (2, 2)

2. Plot

ax [0, 1].text(0.5, 0.5, "I am previewing for \n tomorrow’s final.",

)

7 ax [0, 0].text(0.5, 0.5, "I am Zhiyan Jin", fontsize=20, ha=’center’)

fontsize=15, ha=’center’

ax[1, 0].text (0.5, 0.5, "I am Yitong Guo", fontsize=20, ha=’center’)

ax[1, 1].text (0.5, 0.5, "I’m invincible \n when staying up late.",

5 # 3. Show

plt.show ()
Listing 18: Basic Line Plot

fontsize=15, ha=’center’)

O XA

NN N NN NN

Lecture 0: Python for Data Science

1.0 1.0
0.8 1 0.8 1 . i
06 . . 06 | am previewing for
%11 am Zhiyan Jin| ®¢7 tomorrow's final.
0.4 1 0.4 1
0.2 0.2
0.0 T T T T 0.0 T T T T
00 02 04 06 08 10 00 02 04 06 08 10
1.0 1.0
0.8 1 0.8 1
06 |) 0 I'm invincible
%7l am Yitong Guo| ®° jwhen staying up late
0.4 1 0.4 1
0.2 0.2
0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0

11.2 Pairwise Data

Figure 1: Results of the Code Above

These plots visualize the relationship between variables (usually = and y).

e plot(x, y): Connects points with lines. Best for time series or mathematical functions.

e scatter(x, y): Draws unconnected points. Best for finding correlations between two variables.

e bar(x, height): Vertical rectangles. Best for comparing categorical data.

import matplotlib.pyplot as plt

import numpy as np

Prepare Data
x = np.linspace (0,
y =2 *x x + 1

10, 10)

Create Figure
fig, ax = plt.subplots(3)

1. Plot (Line)
ax [0].plot(x, vy,
ax [0].legend ()

Scatter (Points)
np.random.normal (0,
y + noise,

5 #2.
noise =
ax[1].scatter (x,
ax[1].1legend ()

2,

3. Bar (Categorical)

categories = ["A", "B",
values = [6, 7, 3, 8, 4]
ax [2] . bar(categories, values,

ax [2].legend ()

D@

plt.show ()

linewidth=2.0,

color="blue",

Dip@

label="Bar Plot",

label="Line Plot")

10)
label="Scatter Plot")

llEH]

color="green")

Listing 19: Pairwise Plots Example

16

Lecture 0: Python for Data Science

1
2
3
1
5

10
11
12

13

201 — Line plot
10 A
0 T T T T T T
0] 2 4 6 8 10
207 ¢ scatter Plot
L o
10 A °
. o
01 @ T T T T
0] 2 6 8 10
N Bar Plot
5 P
04
A B C D E

Figure 2: Results of the Code Above

11.3 Statistical Distributions

These plots help us understand the spread, central tendency, and outliers of a dataset.

e hist(x): Histogram. Bins data to show frequency distribution.

e boxplot(X): Shows the median, quartiles (25%, 75%), and outliers.

e pie(x): Proportional sectors (use sparingly in data science).

np.random.randn (1000)

(axl, ax2) = plt.subplots(l, 2,
Histogram
axl.hist (data, bins=100, edgecolor="white")

axl.set_title("Histogram (Distribution)")
Boxplot

ax2.boxplot (data)

ax2.set_title("Boxplot (Outliers)")

plt.show ()

figsize=(10,

4))

Listing 20: Statistical Plots Example

Histogram (Distribution)

Boxplot (Outliers)

o

Figure 3: Results of the Code Above

Lecture 0: Python for Data Science 17

12 Advanced Visualization: Seaborn (More Examples Later)

While Matplotlib handles the low-level drawing, Seaborn is a high-level library built on top of Matplotlib.
It is specifically designed for statistical data exploration and works seamlessly with Pandas DataFrames.

import seaborn as smns
sns.set_theme (style="ticks")

Load the penguins dataset
penguins = sns.load_dataset ("penguins")

Show the joint distribution using kernel density estimation
g = sns.jointplot(
data=penguins,
x="bill_length_mm", y="bill_depth_mm", hue="species",
kind="kde",

Listing 21: Seaborn Scatter Plot

species
22 o — Adelie 1
—— Chinstrap
—— Gentoo
20 - -
£
E 18 4
£
[=%
3, o
E 16 4 -
14 4 -
12 4 -
T T T T T T T
30 35 40 45 50 55 60

bill_length_mm

Figure 4: Results of the Code Above

	Variables, Data Types and Operators
	Variables and Constants
	Assignment
	Basic Data Types
	Type Conversion (Casting)
	Operators

	Input and Output
	Flow Control and Loops
	Indentation
	Logical Operators
	Handle Dangerous Part of Code (try/except)
	Conditional Statements (if/elif/else)
	Loops (For and While)

	Functions
	Lists
	Dictionary
	Object Oriented Programming
	Objects and Classes
	Class Definition and self
	Information Hiding (Private Fields)
	Inheritance

	Basic Linear Algebra
	Vectors and Matrices
	Vector-Vector Multiplication (Dot Product)
	Matrix-Vector Multiplication
	Matrix-Matrix Multiplication
	Transpose
	Identity Matrix and Inverse
	The Identity Matrix (I)
	Matrix Inverse (A^-1)

	Introduction to Numpy
	Setup
	Operations
	Vector-Vector (Dot Product)
	Matrix-Vector
	Matrix-Matrix
	Transpose
	Matrix Inverse

	Common Data Science Functions in Numpy
	Descriptive Statistics
	Filtering and Logic (np.where)
	Unique Values
	Random Sampling (More Examples Later)

	Introduction to Pandas
	Core Data Structures
	Series
	DataFrame

	Essential Functionality
	Inspecting Data

	Selection and Indexing
	Missing Data
	Data Loading and File Systems
	Reading and Writing Text Data
	Other Types Data Loading

	Matplotlib for Visualization (More Examples Later)
	Basic Operations
	Pairwise Data
	Statistical Distributions

	Advanced Visualization: Seaborn (More Examples Later)

